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Identity Coefficients and Covariances between Relatives
in a Parent-Offspring Inbreeding System*

P.L. Cornelius

Departments of Agronomy and Statistics, University of Kentucky, Lexington, Kentucky (usa)

Summary. A one-locus ''operator'' for a younger parent-offspring inbreeding system is obtained by a
generation matrix method in which 14 ''classes'' of matings are defined. The eigenvalues and a set of
eigenvectors for the generation matrix and, also, the general solution for the frequencies of mating
classes among descendants of an original mating of genotypes ab X cd are given. The operator givesthe
genotypic array of descendants of a given mating an arbitrary number of generations later. Using this
operator, an algorithm is developed for calculating identity coefficients between any two relatives in a
possibly branching younger parent-offspring mating system. Application to obtaining covariances between

relatives for a one-locus model is illustrated.

Introduction

In plant or animal breeding programs which utilize in-
bred lines, an important consideration is the method of
inbreeding used to obtain the lines. Ordinarily the breed-
er will want to do some selection during the inbreeding
process. Therefore, predictions of response to selection
under various inbreeding systems would be an important
consideration in choosing an inbreeding system. Predic-
tions of response to selection under selfing and full -sib
mating in maize (Zea mays L.) were made by Cornelius
(1972) using methods which depend on covariances be-
tween individuals in the generation of applied selection
and in the generation in which it is hoped to observe a
response to the prior selection. In some cases these
may be several generations apart. The mathematical ex-
pressions for the covariances depend on probabilities
(coetfficients of identity) of alleles being alike by des-
cent in the individuals concerned (Cockerham, 1971;
Gillois, 1965; Harris, 1964).

Parent-offspring inbreeding (with mating of offspring
always to the younger parent) is impossible in an annu-
al plant species such as maize, but could be used with .
an animal species or a perennial plant species. This pa-
per deals with obtaining the identity coefficients andco-
variances for any given pair of relatives in a younger
parent-offspring inbreeding system.

There are 15 possible "identity states!' (Gillois, 1965)
of allelic genes of inbred relatives. For‘mpst applicé—

tions, however, it is sufficient to define nine '""condeh*-

# Journal article (74-3-73) of the Kentucky Agricultural
Experiment Station published with approval of the Di-
rector.

sed identity states" (Jacquard, 1972; Harris, 1964; Cocker-
ham, 1971) which, for inbred relatives X and Y, we may

formalize as follows:

Identity State Probability

X Y (Identity Coefficient)
aa aa 6 1

aa bb & P

aa ab & 3

aa be 64

ab aa [ 5

bc aa & 6

ab ab 67

ab ac ] 8

ab cd 89

In the designation:of an identity state, the allele rep-
resented by a given letter is arbitrary, letters which are
the same indicate genes which are identical by descent,
and unlike letters represent genes which are not identi-

.cal by descerit (but may or may not be alike in state). Ge-

neral procedures for calculating the identity coefficients
have been suggested by Harris (1964), Cockerham (1971),
Jacquard (1966), and Nadot and Vaysseix (1973). In reg=
ular systems of inbreeding, for cases where X and Y-
have the same relationship as mated individuals, obtain-
ing their identity coefficients is just a reformulation of
the generation matrix problem applied to mating types
(Fisher, 1965; Kempthorne, 1957, Ch.6).

Kempthorne (1963), in discussing the role of system
of mating in determining means, variances and covar-

iances in genetic popul'ations,' introduced the concept of



202

an ''operator' for a particular mating system and gave
explicit expressions for random mating and selfing oper-
ator. The operator when applied to a genotype or set of
genotypes generates the array of progeny. When applied
m times, i.e., to the mth power, the operator gene-
rates the array of progeny after m generations of the
particular system. If one obtains the appropriate oper-
ator for a given system of inbreeding, a simplified pro-
cedure canbe developed for obtaining identity coefficients
for any relatives in the given system. This was done by
Cornelius and Dudley (1975) for the case of full-sib mat-
ing.

The explicit expression for the mth power of a full-
sib mating operator may be written
Fs™(abxcd) =F z +(F 4 -F )zy+(1+F -

1 +1

- 2Fm+1)23 (1)

where

El = (aa + bb + cc + dd)/4
22 = (ab + cd)/2
23 = {ac + ad + bc + bd)/4

and Fm is the coefficient of inbreeding in-the mth gen-

eration given by

Foy =0
F, =0
F o=0+F__,+2F _,)/4, m>2. (2)

In (1) the argument, ab X cd, is intended to mean that
the operator is applied to the family generated by that
mating..

Horner (1956 ) derived expressions for the covarian-
ces of parent and offspring and of full-sibs under younger
parent-offspring inbreeding for a one-locus model re-
stricted to two alleles at the locus. These covariances
for the case of multiple alleles could readily be obtained
from Fisher's (1965) work, but to obtain covariances be-
tween more distant relatives, such as grandparent-grand-
offspring, uncle-nephew, or cousins in a branching sys-
tem, a simple procedure for obtaining identity coeffi-
cients for any relatives in the system is useful.

This paper extends the methods of Cornelius and Dud-
ley (1975) to the case of younger parent-offspring in-

breeding and to a more general class of identity coeffi-
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cients. (The previous paper dealt only with a set of 5
condensed coefficients necessary to obtain covariances
between relatives.) The operator analogous to (1) is ob-
tained and applied to the calculation of identity coeffi-
cients and obtaining covariances between any relatives
in the system. The genotypic distribution of matings
among descendants of a given initial mating is also ob-

tained.

Derivation of the Younger Parent-Offspring Mating
Operator

We presume that in generation zero all matings are at

random and, thereafter, one (or more, thus allowing
the system tobranch) randomly chosen offspring is (are)
always mated to the younger parent. In generation zero,
which parent is actually younger is irrelevant, but we
will define the "younger' generation zero parent to be
the one chosen to be used again in generation 1. Let a
given generation zero mating be designated ab X cd, and
let ab be the genotype of the 'younger'' parent.

For the case of sib-mating, Cornelius and Dudley de-
fined three sets of genotypes involving the genes a, b,

¢ and d:

21 = faa, bb, cc, dd}
z, = {ab, cd|
Zgy = {ac, ad, bc, bd}.

For the parent-offspring case, it will be necessary to

partition sets z, and z, into disjoint subsets as follows:

z11 = faa, bbf
z12 = {cc, dd}
221 = fabf
Zyy = fedf.

Thisleads to the following formal expression of genotypic

arrays:

211 = (aa + bb)/2

_12 = (cc + dd)/2

221 = ab

222 =cd

23 = (ac + ad + bc + bd)/4
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Table 1. Symbolic expression of mating classes under parent offspring in-
breeding, their frequencies, and genotypic arrays of offspring

Genotypic Array of Off-

Younger Older spring from All Matings
Parent Parent F'requency of Given Class
1. dlez g%  div*eaz f Zy,
2. iie 212 ii € Z12, f2 PP
3. ijezy, ij &z, f, (211 + 221)/2
4. ije oz, ij & 24 f, (Z11 + le + 223)/4
5. diezg, ij ezy, f. (211 + 221)/2
6. diezg, ij e z4 fg (zyq + 23)/2
7. ez, ij €24 £, (212 + EB)/z
8. ije zy, ez, fg (511 + 221)/2
9. ijezg ez, £ (El1 + 23)/2
10.  ij e zg it ez, 10 (212 + ES)/z
1. ijeazy, ik ez, £4 (E11 + 221 + 223)/4
12, ijezg ik € 24 1o (212 + 221 + 223)/4
13, ije 24 ik ez, fi3 (211 + 221 + 223)/4
14. ij € Zgy kée Zgy f14 Zg

# The symbol € is used to indicate to which set a genotype belongs and
may be read '"is in''. For definiton of Z11’,Z12’ Zoys Bog and Zqs
see text. . .

#% Letters in common in younger and older parent genotypes indicate
identity situations between the two parents, e.g., Mating Class 1
consists of matings of identical homozygotes (by descent) subject
to the restriction that this homozygous genotype is in set Zyq

Cornelius and Dudley subdivided Fisher's (1965, p. er generation. It should be noted that Class 12 consists
23) seven mating types* into 13 classes, such that the of only 2 possible matings, ac X bc and ad x bd, the
various possible matings within any given class are al- mating ac x ad, for example, is impossible because aft~
ways equally frequent, but matings which are of the _ er generation zero the genés ¢ and d can never again

same type, but in different classes occur with differing come together in the same mating. Also, the genotype

frequency. For the parent-offspring case there are 14 cd can never reappear, so the only need to define the set
classes of matings (Table 1). Mating Classes 1 and 2 Zys is to characterize Class 14 and to obtain identity co-
both conform to Fisher's (1965, p. 58) mating type efficients of descendents with the generation zero 'older"
aa X aaj i.e., Classes 1 and 2 are disjoint sets of mat- parent.

ings of type -aa X aa; Classes 3 and 4 are disjoint sets Let fi(m) be the frequency of the ith mating class in

of type ab X ab; Classes 5, 6 and 7 are disjoint sets of  geperation m, and let
type aa X ab; Classes 8,9 and-10 are disjoint sets of

type ab x aa; Classes 11, 12 and 13 are disjoint sets f(m) = f(m) f(m) f(m) "
- 1 E E RN | 4 3
of type ab x ac. Class 14 consists only of the given gen- 2 1

ion zero mati ab d and cannot occur in any lat-
eration zero ting x e nd ¥ be the column vector of these frequencies. Then

. o g(m) | qmy(0)
# Fisher's original concept of mating type was not based S o
onthe concept of identity by descent. However, his
work is valid regardless of whether the mating types
represent situations of identity or merely situations of
alikeness in state of genes in individuals mated. Through-
out this paper a mating type should be regarded as a (0)
situation of identity. £ = [0,0,0,0,0,0,0,0,0,0,0,0,0,1]",

where A is the 14 X 14 generation matrix (Table 2) and
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Table 2. Generation matrix (frequencies of generation m mating classes among offspring

of a given generation m-1 mating class)

Generation m-1 Mating Class

Generation m

Mating Class 1 2 3 4 5 6 7 8 g 10 11 12 13 14
1 1 0 0 0o 1/2 1/2 o0 0 0 0 0 0 0 0
2 0t 0 0 0 0 1/2 0 0 0 0 0 0 0
3 0 0 1/2 o0 0 0 0 1/2 o 0 1/4 0 0 0
4 0 0 0 1/2 o0 0 0 0 1/2 1/2 0 1/4 1/4 0O
5 0 0 1/2 o0 0 0 0 1/2 ©o© 0 1/4 o0 0 0
6 0 0 0 1/4 0 0 0 0o t/2 0 0 0 1/4 0
7 0O 0 0 1/4 o0 0 0 0 0 1/2 0 1/4 © 0
8 0 0 o 0 1/2 © 0 0 0 0 ) 0 0 0
9 0 0 O 0 0o t/2 0 0 0 0 0 0 0 0
10 0 0 © 0 0 0 1/2 o0 0 0 0 0 0 0
11 0 0 O 0 0 o} 0 0 0 0 0 1/4 1/4 0
12 0 0 O 0 0 0 0 0 0 0 o 1/4 1/4 0
13 0 0 © 0 0 0 0 0 0 0 1/2 o0 0 1
14 0 0 o0 0 ) 0 0 0 0 0 0 0 0 )

(0)

Table 3. Eigenvalues of A and a solution for g

and C_1

for parent-offspring inbreeding generation matrix

Column of c!

Eigenvalue g0 1 2 3(4)* 5(6)* 7 8 9 10 11 12 13 14
1 1 2/3 -1/6 -(1+y)/5 (1-4y)/5 -1/4 -1/12 0 0 1/2 0 0 0
1 0 1/3  1/6 -(1+4)/5 0 1/4 /12 0 0 0 0 0 0
o 2 0 0 0 2(3y-2)/5 0 0 1 0 -1/6 -1/3 0 0
' 2 0 0 (3-2y)/5 0 0 0 0 1 -1/3  1/3 0 0
v 1 0 0 0 2(3y-2)/5 0 0 0 0 -1/6 -1/3 0 0
y' 1 0 0 (3-2y)/10 0 1/4  1/4 0 o -1/3 1/3 0 0
1/2 2 0 0 (3-2y)/10 0 -1/4 -1/4 0 0 0 0 0 0
-1/2 2 0 0 0 (7-8y)/5 0O 0 -1 0o -1/6 2/3 0 1
0 0 0 0 (3y-2)/5 0 1/4 -1/4 0 -1/2 -1/3 -2/3 -1/2 -1
0 0 0 0 (3y-2)/5 0 -1/4 1/4 0o -1/2 0 0 1/2 1
1/2 2 0 0 0 0 0 0 0 0 1/3 -1/3 0 -2
-1/4 -4 0 0 0 0 0 0 0 0 1/3 -1/3 -1 -2
0 0 0 0 0 0 0 0 0 0 1/3  2/3 1 2
0 1 0 0 0 0 0 0 0 0 0 0 0 1
* Column 4 can be obtained from column 3 and column 6 from column 5 by replacing ¢ with ¢'.

#* = (1+V5)/4, v = (1 -V5)/4.

since the given generation zero mating, by definition, is

in Class 14. To obtain a solution for f(m we need a

transformation of the type

g(m) _ C-lg(m) - C‘I(CAC‘I)mg(O)

(0)

the diagonal elements of CAC™ ' (which are the eigen-

where CAC™ ! is diagonal. Solutions for C_l, g and
values of A) are given in Table 3. The resulting general
solutions for the elements of f(m are in Table 4.
Cornelius and Dudley (1975), in applying a similar
technique to the case of sib-mating, obtained an eigen-

value, -1/4, which is not an eigenvalue of Fisher's (1965,

Ch. III) generation matrix for sib-mating. The same
thing happens in the present case, i.e., an eigenvalue,
-1/4, is found which is not an eigenvalue of Fisher's
(1965, Section 18) (or Horner's (1956)) generation ma-
trix for parent-offspring inbreeding. This indicates that
the 14 X 14 matrix contains information concerning the
structure of the mating system which is not obtainable
from Fisher's work.

The desired operator for parent-offspring inbreeding
powered m times generates the generation m+1 geno-
typic array of offspring of the givengeneration zero mat-
ing. This is obtained by applying the mating class fre-
quencies to the genotypic arrays in Table 1 and collecting

terms in Ell’ -Z_12’ '7?21, and 53, giving
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Table 4. Frequencies of mating clagses in generation m

Mating Class Frequency

205

1 F‘m+u/2—(1+v/2)/3*

2 2F‘m+1-—F‘m-1+u/2+(1+v/2)/3

3 6Fm+1-5Fm-1-(u-4w)/3

4 2(1+3Fm-4Fm+1)—2(u+2w)/3

5 6Fm+1~5Fm—1-(u-4w)/3

6 1+3Fm-4F‘m+1—u/6+v/2-4w/3

7 143F -4F . -(u+v)/2 "
8 2(1+4Fm—5Fm+1)—(u+8w)/3+0m
9 6Fm+1-5Fm-1-u/6—v/2+8w/3—0m
10 GFHM-3Fm-1-(u-v)/2+om

11 20(u+2w)/3-0™]

12 2[(u+2w)/3-0™]

13 2[(u-4w)/3+0™]

14 o™

# ou=(1/2)™ vz (-1/2)™, w= (-1/4)™ and F o, is
the coefficient of inbreeding in generation m.

1ifm=0

## m {=
=0if m>0.

0

Table 5. Mating types, their frequencies and sets of genotypes generated by each type

Frequency in

Mating type generation n-1 %11 212 Za1 Z22 23
aa X aa 2Fn—1+(1/2)n’1‘ {aa,aal {aa,aa) {aal {aal {aa,aa,aa,aal
ab x ab 1+F _ -?F - (1/2)"t {aa, bb} {aa,bb} {abj {ab] {aa,ab,ab, bb}
3. aaxab 1+F__ -2F - (1/:2)“'1 {aa,aal {aa,bb) {aa} {ab {aa,ab,aa,ab}
- -1
4. abxaa 2(F‘n—Fn_1)-(1/2)n 1,001 {aa,bb} {aa,aal {ab] faa} {aa,aa,ab,abl
ab X ac (1/2)“'2 - 2(0™ 1) {aa, bb} {aa,ccl {ab] fac] {aa,ac,ab,bc
-1
6. abxcd O {aa, bb} {ce,dd} {abl {ed} fac,ad,be, bd}
w? [=1ifa=0
=0 if a>0.

PO™(ab x cd) = {F_/2+[1-(-1/2)")/6lz,,

+ {F

e F/2-01-(-1/2)" /8l Z,

)ZB.
(3)

+ (F

m+1_Fm)z2.1 +(l"LF‘m_ZF

m+1

The coefficients of inbreeding Frn’ m = 0, may be ob-
tained from equations (2) since coefficients of inbreed-
ing by parent-offspring inbreeding follow the same re-
currence relations as do coefficients of inbreeding un-
der full-sib mating (Kempthorne, 1957, p. 83).

Some interesting comparisons of (3) with (1) can be
made. The last term is exactly the same in both expres-
sions. Comparing the second term of (1) with the third
term of (3) we see that the recovery of parental geno-
types occur with the same frequency in either system,
but such recoveries are divided equally among genotypes
ab and cd under sib-mating whereas only genotype ab
is recovered in a parent-offspring system. In (1) the
genotypes aa, bb, cc, and dd are equally frequent where-
as in (3), except when m=0, aa and bb occur with great-
er frequency than cc and dd. For m > 1, an equivalent

is’

expression for the coefficient of 212
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(F__/2+ [1-(1-1/2)™"")/6} /2

which shows that the frequency of cc and dd is always
half the frequency of aa and bb in the previous gener-
ation. The asymptotic distribution is (2511 + 512)/3,
i.e., when complete homozygosity is reached two-thirds
of the descendants are of genotype aa or bb and one-
third are cc or dd.

Given any mating in an arbitrary generation, say gen-
eration n - 1, the genotypic array of descendants from
that mating in generation n+m may be obtained by apply-
ing the operator (3) to that mating. In so doing, we re-
lax the restriction that the genes a, b, ¢, d be noniden-
tical by descent and instead let them assume the identity
situation of a particular generation n-1 mating. In par-
ticular, under parent-offspring inbreeding, the mating
types, their frequencies in generation n -1 if all matings
are of type ab x c¢d (a, b, ¢, d nonidentical) in generation

zero, and the sets z 299 and Zg condition-

11° %122 %210 2
al on the identity situation of the generation n-1 parents

are as shown in Table 5.

Identity Coefficients Between Relatives

Consider two relatives, X and Y, in a possibly branch-
ing system of parent-offspring inbreeding. To obtain the
identity coefficients between them it is necessary to
tracetheir relationship to a set of parents in some gener-
ation, say generation n-~1, in which both parents are
common ancestors of X and Y. Note that if X and Y
are not generation n individuals, they will have one (the
younger generation n-1 parent used again in genera-
tion n), but not both, generation n ancestors incommon.
If both parents in generation n are common ancestors
of X and Y, then generation n-1 is not correctly iden~
tified. Let n+m and n+k be the indices of the gener-
ations of X and Y, respectively. In the case where X is
an ancestor of Y, n-1 will be the mating generation in
which X is a younger parent. Then m will be equal to

-1 and we will define F_, = -1. The reason for doingthis

1

is that we want m = -1 to give a coefficient of unity for

Z21 11> Z1p» 20d 2Z3-
This may at first seem illogical. However, given FO =

in (3) and zero coefficients for z

= Fl = 0 and defining Pn =1- Fn’ the recurrence rela-
tion for Pn (Kempthorne, 1957, p.84) actually generates

P—l = 2, thus giving F-—l = 1. This result, of course, has
no probabilistic interpretation and the only rationale for

its use is that it happens to give the desired result for
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m = -1 in (3) and makes it unnecessary to deal with the
case of X an ancestor of Y as a special case unless X
is the ''older" generation zero parent. Note that, from
(3) and (1) we can now define

PO~ Mab x cd) = ab

Fs™ ! (abxcd) = (ab+cd)/2.

For example, consider the path diagram in Fig.1. We

can summarize this diagram as follows:

Generation Matings Offspring

0 AXB C,D
CxA E,G
Dx A H,I

2 ExC J,K
GxC L,M
HxD N,Q
IxD R,S

Now consider the following possible choices of X and
Y, the most recent mating where both parents are com-
mon ancestors of X and Y and the resulting values of

n-1, m and k.

Generation
X Y n-1  n-1 mating m k
J K 2 ExC 0 0
J L 1 CxA 1 1
L N 0 AxB 2 2
BE N 0 AXxXB 1 2
C N 0 AxB 0 2
E G 1 Cx A 0 0
C D 0 AxB 0 0
A J 0 AXB -1 2
A C 0 AxB -1 0
C L 1 CXA -1 1

Denoting the younger ancestor of X and Y inthe gen~
eration n-1 mating by A, and the older ancestor in

that mating as A,, the genotype of X is a random choice

2,
from the distribution of genotypes given by POm(A1 X
X AZ)' Similarly Y is randomly chosen from F'OK(A1 X
><A2). Clearly, ifthe genotypes of A1 and A2 are known

or if only the state of identity between them is known, we
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Generation
0 A B,
/ \
7 L 2
2
3 J K L MN @ RS

Fig.1. Path diagram of parent-offspring inbreeding sys-
tem with branching

can easily obtain the probability of any state of identity
between X and Y. The usual situation, however, is that
the state of identity of A1 and A2

randomly chosen from a known or assumed distribution

is unknown, but is

of identity states. In our case this would be the gener-
ation n -1 distribution of mating types. The probability
of a particular state of identity between X and Y can be
obtained by finding that probability for each possible
1 and A2
ed mean of these probabilities over the distribution of

identity state for A and then taking the weight-

identity states (mating types) of Aj and A,
Let és(ij)M
s=1,2,...,9, conditional on X being a random mem-

ber of set z; and Y a random member of set Zj’

be the identity coefficient, és’

i,j =11, 12,21, 3; Z; and zj being conditional on a given
generation n-1 mating type, M. (Note that for the z's
which have two subscripts, i or j represents the double
subscript. ) Form the 8<(ij)M into a 4 x 4 matrix, 8-
Removing the conditional membership of X and Y in
given sets,

bs(., )M = ®x8sMCy (4)

where

ey={F _/2+[1-(-1/2)™1/6,F . -F /2-[1-(-1/2)"1/,

m+1

F_,,-F _, 1+F -2F
m m

m+ m+1}

(5)

v has the same form as cX

k. Finally, removing the conditioning on mating type,

and ¢ with m replaced by

6
_ {n-1) _ o aln)
6s - Z fM clXAsM Cy = °x As Sy (6)

M=1
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where f(n_l) is the frequency of mating type M in gen-
M Y gty

eration n-1 (Table 5), and

6
-1
o= ) ey
M=1

We will denote the (i,j)th element of Aén) by &

The 5s(ij)M
Table 5. For example for i=11, j=11, we have

(7)

(n)
s(ij)
can be written down by inspection of

Mating type (M) $1(11,11)M 82(11,11)M

1. aa x aa 1 0
2. abxab 1/2 1/2
3. aa x ab 1 0
4, abx aa 1/2 1/2
5. ab x ac 1/2 1/2
6. abx cd 1/2 1/2
and 65(11,11)M =0 for s = 3,...,9 forall M.

Taking means over the generation n-1 distribution of

mating types, we get

5?81,11) =(1+F _4)/2
6.&111,11) =(1-F 42
(n)

6sr(111,11) =0, 8=3,...,9.

(n)

s

for(m;llae(ax)'e gi(ve)n in the (A'S)—
n n n 4 {n

» 8577, 877, A8 » and 44

gn) Agn) are the trans-

All of the elements of the A matrices are found in

this manner. The resultin%
pendix. The matrices Agn
are symmetric, whereas A and
(1) gng alm)
S5 6

The &'s for the case where X is the ''older' gener-

poses of A respectively.

ation zero parentand Y is a generation k+1 offspring are
not obtainable from (6). However these are easily ob-

tained from (3) as

by =b,=8y=06,26,=0
. K

§,=F /2+ [1-(-1/2)°1/6

6~k

b5 = Fy,q1 - 8

68=1+Fk_2Fk+1

89 = Fyp1 ~ Fy
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Any other case involving an older parent can be ob-
tained from (6) because, for n > 1, the older parent in
generation n is the younger parent in generation n-1.

The algorithm for obtaining the identity coefficients

between relatives X and Y can now be summarized:

1. First determine generation n-1, i.e., find the
most recent mating in which bot? parents are common
ancestors of X and Y. Then generation n-1 is the gen-
eration of the younger parent in that mating. That is, n
is the generation of the offspring of the mating so identi-
fied. If. X :is an ancestor of Y, then n-1 is the gener-

ation to which X belongs.

2. Determine the generations, n+m and n+k, of X
and Y respectively, and solve for m and k.
3. Obtain the matrices Aén), s=1,2,...,9, which

depend on n.

e Y which de-

pend only on m and k, respectively. If m or k = -1

4. Using (5) obtain the vectors c,, and ¢
(which will happen if one relative is an ancestor of the

other), set F__ equal to -1.

1
5. Calculate the identity coefficients using (6).
To illustrate, consider a generation 4 uncle (X) and
generation 8 nephew (Y). Then n=4, m=0, k=4.From
(2) the inbreeding coefficients needed are:

Fooo= 1/2
F o4 = 3/8
. F: =0
m
F‘m+1 =0 .
Ek =1/2
Fp.4° 19/32
Pk = 201/256 .

The Aén)‘ matrices, using the equations from the Appen-~

dix,
[11/16  1/2  3/8 3/8 |
A§4) - 5/8  1/4  11/32
3/8 1/4
| sym. 17/64_
[ s/16 1/2 0 1/8 |
A£4) - 3/8 1/8 7/32
0 0
| sym. 1/32d
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Identity Coefficients and Covariances between Relatives

[ o 0 5/8 7/16 ]
(4)_ (4) _ 0 0 1/2 3/8
A3 _45 =
0 0 0 1/8
| 0 0 1/4 3/16J
[ o 0 0 1/16 |
(4)_ ,(4) _ 0 0 1/8 1/16
8,7 0= 85" =
0 0 0 0
| o 0 0 1/64J
- -
0 0 0 0
A(4) _ 0 0 0
7 =
5/8 1/4
| sym. 13/64_
[ o 0 0 o |
2(4) . 0 0 0
8 =
0 1/8
| sym. 3/32 |
Aé4) = zero matrix.
Using (5):
cy = (0,0,0,1);
¢\, = (13/32, 3/16, 3/32, 5/16).
_oaoAl4)
51_ch1 cY—331/1024
A4
8y = C By cY—13/128
TN G5 S
8y = Cy Ag cY-21/256

o At4)
84 =Cy by cY—5/1024

A4
55_cX,A5 cY—163/512

g = c'xAé4)0Y - 43/1024
55 = ¢l A.§4>cY= 89/1024
bg = c'>(A§4)cY: 21/512
5g=0.

Covariances Between Relatives

Using a model described by Cornelius and Dudley (1975)
which provides for additive and dominance effects but
assumes no epistasis orlinkage, the covariance between
relatives X and Y is

Cov(X,Y) = 5105 (6% 8

2-FXFY)uf,+ [(s5+85)/21C

2 2
+ (67+68/2)0A+670D (8)
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where

FX, F‘Y are the coefficients of inbreeding of X and Y,
- respectively;

ci and 0123 are the additive genetic variance and domi-
nance variances, respectively, in the original
random mating population;

ci is the (additive) genetic variance in a completely ho-
mozygous population resulting from inbreeding
the original population without selection;

C is twice the sum over loci of the covariance of the
effect of a gene at a given locus in the homozy-
gous population with its additive effect intheorig-
inal population; and

wis T (Zpidii )2

loci ‘i
where the p, are gene frequencies and dii is

the dominance deviation of genotype AiAi in the

original population. The quantity Z pidii is the
i

contribution of the given locus to the difference

between the mean of original and completely ho-

mozygous populations.

Formula (8) follows immediately from the definitions
ofthe components and the identity states. A lengthier der-
ivation is given by Cornelius and Dudley (1975). They
also relate the parameters in (8) to a parameterization
developed by Harris (1964). The covariance components
in (8) were previously described by Kempthorne (1957,
Section 17.11). His V_ is our o-.

In the covariance of generation 4 uncle and genera-

tion 8 nephew (example of previous section):
coetficient of o2 = &, = 331/1024;

coefficient of p.i = 61 + 62 - F4F8
= 331/1024 + 13/128 - (1/2)(201/256)
= 33/1024;
coefficient of C = (54 + 55)/2
= (21/256 + 163/512)/2
= 205/1024

coefficient of 02

A~?®

ot 68/2
89/1024 + (21/512)(1/2)

110/1024;

coefficient of c]% = 89/1024.

:67

So the covariance of generation 4 uncle and genera-
tion 8 nephew in a parent-offspring inbreeding system is
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(331/1024)02 + (33/1024) w2+ (205/1024)C + (110/1024) %

. (89/1024)012‘).

For a one-locus model with two alleles, A and a, with
gene frequencies p and q = 1 -p, respectively,

2 2
o, = PAy

2 _2_.222

Mo = 0n =P q X

2

C =pay” + palp-q)xy

ci = [pay®+2pa(p-q)xy +pa(p-q) %x21/2 (9)
where
y = AA - aa

X = AA + aa -~ 2Aa

in which, to calculate y and x, genotypic values are
substituted for the genotypes (Kempthorne, 1957, Chap-
ter 17; Cornelius and Dudley, 1975). Using (9) it has
been verified that Horner's results for the covariances
of parent and offspring and of full sibs agree with (8)
with the identity coefficients calculated by the algorithm
developed here.

Covariances Useful in Applications

The utility of estimates of the covariance components is
discussed by Cornelius and Dudley (1975) and applied by
Cornelius (1972) to problems of predicting response to
selection in an inbreeding program and choosing an in-
breeding system. For similar applications in regard to
a parent-offspring inbreeding system some useful covar-
iances are:

1. Covariance of a generation n-1 younger parent
and completely homozygous descendants:

lim Cov(PO_i(Mn_l),POm(Mn_l))len_i—f(th

m- ¢

-1
—2F )/2-(1/2)"1/3} o2+ L(1-F __,)/2-(1/2)"/3]C

(10)

where Mn-l is a randomly chosen generation n-1 mat-

ing.

2. Covariance of the mean of a generation n full-sib

family and its completely homozygous descendants (equi-

valent to covariance of generation n uncle and generation

® nephew):
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lim Cov (PO%(M__ ),PO™(M__,)={(4F -1:0""1/4)/3

+(1/2)" o2 {(F -F_ -(1/2)0"71/2)/3} 2

UGB -4Fn)/2-(1/2)“]/3§c (11)

-1

3. Covariance of mid-parent value in generation n-1

and completely homozygous descendants:

. -1 m _
lim Cov(FS™ (M _,),PO" (M _)=[(22F -3F  -7)/12

m->®

+ (1/2)" 101 /3162

P L(3+F _ -4F )/4-(1/2)™""

-1

-0 t/41c (12)

Covariances involving average genotypic values of
progeny (general combining ability) resulting from mat-
ing an individual or a family at random with the popula-
tion are also of interest. The array of progeny of such
matings may be represented by Kempthorne's random
mating operator R{-) in which the argument may be any
given array of genotypes and the operator generates the
array of progeny when that array of genotypes is mated
at random with the population. In particular, R(PO—1

(Mn_l }} is the array of progeny resulting from mating
a randomly chosen generation n -1 younger parent at
random with the population. R(FS—l(Mn_l)) generates
the array of progeny resulting from taking both parents
‘ of a randomly chosen generation n-1 mating and mat-
ing them at random with the population. R(POO(Mn_1))
generates the array of progeny resulting from taking a
randomly chosen generation n family of full sibs and mat-
ing them at random to the population. In general, it is
easily seen from the definitionof the é's and the covariance

components that, for relatives X and Y

Cov(X,R(Y)) = (51/2+63/4)C + [(65+67)/2+68/4] ci
(13)

Cov(X,R(X)) = (F,/2)C + [(1-F )/2] o2 (14)
These are general formulae which apply to any system of
inbreeding. (Note that Cov{R(X),Y) is obtained by in-

terchanging 6, and &g in (13).) Thus, if a plant or ani-

mal breeder 12 selecting on the basis of inbred perform-
ance ofindividuals or families, but wishesto predict res~
ponse in general combining ability as a resultof selection,
obtaining the relevant covariances is reduced to the prob-

lem of obtaining the §'s.
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Numerical Results

A FORTRAN 1V program has been written to generate
identity coefficients and coefficients of the components
of covariance for all possible relatives (ancestor-des-
cendant, uncle-nephew removed by one or more gener-
ations, full sibs, cousins) up to the eighth generation of
a younger parent-offspring inbreeding system. The pro-

gram or its results are available to interested readers.
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Appendix

The Aén) matrices in (6) and (7) are of the form
,(n) 5 () o () S ]
s{11,11) °s(11,12) °s(11,21) °s(11,3)
5(n) 6(n) 6(n) (n)
s(12,11) %s(12,12) %s(12,21) Ys(12,3)
6(n) 6(n) é(n) (n)
s(21,11) O%s(21,12) O%s(21,21) Os(21,3)
() 5(n) 5(0) 5(0)
s(3,11) s(3,12) s(3,21) s(3,3)

We have already noted that Al’ AZ’ A7, AS’ and Ag are
symmetric, and

A3:Aé

By = b
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Therefore only the upper triangle of each matrix will be (n) -
given. Let u = (1/2)*. Then we have: 4(12,21) = <%
(n) _ n-1,_ .
For Agn): 84(12,3) =u=-0 /2
(n) _ n-1
(n) _ (1+F )/2 4(3 3) = (21.1-0 )/8.
1(11,11) n-1//%>
n - .
81(11,12) = Fn For a0,
n F 5
5 = ;
1(11,21 -1?
(I(I) ,21) " o é‘(‘l) Hyc 5§?3 (ys 1711, 12, 21, 35
8 = (4F_+F -1+ 2u)/4; ’
1(11,3) n n-1 ’ o .
(n) n-1 5(i i) =0 if i=11 or 12;
6 =2F -F 0 /2 ’
1(12,12) n n-1 ? 5(n - (1-F )/2 -
5.0 = (2F_+F_ -1+ 2u)/2; 5(21,3) ~ n-1 ue
1(12,21) n n-1 ?
(n) _ ' n-1,,.
51(12,3) ~ (4Fn—Fn_1—1+u)/2+O /45 For Aén)i
{n) _ .
81(21,21) = Fn-13
(n) ’ The only non-zero element in the upper triangie is
81(21,3) = (2F, +F__4- 1+ 2u)/2; S () _ ()
(n) _ n-1 6(3,3) T "4(3,3)"
81(3,3) ° (14F -F_ _,-5)/8+u+0""/8.
{(n), (n),
For A2 : For A7 :
(n) _ . 5n) P _ .
62(;1,11)_(1-Fn—1)/2’ ,(7(1) ) =0 ifi or j=11 or 12;
n = - . n = - -
S2(11,12) = 1~ Fps 52(21,21) = 1~ Fpotd
(n) _ +(n) s(n) (n) - .
5%(;1,21) 03(21,21) T %2(21,3) 7 5'2(.§1 3) = (-Fp /2 -u
n - (1 - - . - (1 - _ n-1
85(11,3) = (1 -F_)/4-u/2; b7(3,3) = (1-F)/2-3u/1+0" /s
5&’(‘12, 12y =1+ F 4 - 2F - o1z,
(n) _ For a{M):
85(12,21) ~ (1+F 4 -2F )/2-u; 8
(n) _ n-1 (n) n .
b3(12,3) = (E—Fn 1)/ -3u/2+ 0 /4 68(i,j) =0 if ior j=11 or 12;
(n) n) (n)
52(3,3) = fa(iz,21)/% 58(21,21) = 0
(n) = oy
(n) °8(21,3) =2
For Aq {n) n-1
) 58(3,3) - (Bu-0""")/4.
3(i,j) =0 if j=11 or 12; (n)
) S1-F For A4
®3(11,21) ~ n-1?
:(3r(111 3) = 1- Fn -u; All elements are zero except
5(n) 5 - 0% l/s
b3(12,21) = 1~ Fpog - 245 9(3,3) ’
s{n) =1+F F ;
3(12,3) DT 2 n? Also of possible use are cases where X or Yezzz (e.g.
(n) ) in finding covariances involving mid-parent values).
53(21’ 21) 03 Consideration of these possibilities is equivalent to aug-
(n) menting the A{"’ matrices with another row and column.
3(21 3) ~ (1+ Fn—l - an)/z - The additional columns are
sin) -
53(3,3) ° (1-F_ )/2-u. Agn):
n)
For a; ’: (n) _ n-1,,.
4 81(11,22) = 3Fp-Fp g -1+us0 /2;
5(n) P i n - (n) n-1.
4(1 i) =0 if i=21 or j=11 or 12; 61(12,22)— 1(22, 22)-4F‘n—2Fn_1—1+0 ;
n) -0 n - .
$4(11,21) 7 0 8i(21,22) = #Fp -1+ 203
(n) . n _ n-1,,
b4(11,3) =W 8i(3,22) =3Fp-Fpy-1+u+07/2.
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Aén):

(n)
62r(111 22) =Fp - F

(n) P
S5(i,22) =0 1=12, 21, 3, 22.

n-1

Aén):

(n)
53?11,22) =2(1+F

5(n) (n)
3(12,22) 3(11,22)

(n) - .
63(21,22)—1+F _ —2F —2.u,

-2F )-2u-0
n

= § + 2u;

(
{(1? 22) 3r(111 22)/2
ZS3r(122 22) = 0-

Agn):

(n)
4(11,22)

(n) PR
841 22) =0» 1712, 21, 3, 22.

6 = 2u;

Aén):

g(n) -0 - .
85(i,22) = 0» 1711, 12, 22;

( )

S5(21,22) = 2(Fp - F
n _ (n) /2
5(3,22) 5(21 22) =

no1) —2u+0
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February 10, 1975
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-u o+ o“'l/z;

n-1,

n-1

5

?
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(n),
8"
5{n) =0, i=11, 12, 21, 3, 22
6(1,22) = s 1= H > > ) .
(n},
A"
5§r(11) 2p) =0, i=11,125
5{n) _ )
b7(21,22) =1 * Fpoq ~2F - 2w
= n-1,,,
57(3,22) =1+F 4 -2F -u+077/2;
n _ n-1
82(22,22) ~ 2(1+F_ _ -2F )-0"".
A(n):
6&11) 22) =0, 1=11,12,22;
n _ n-1,,
8g(21,22) = 4u-2(077);
n
68(3,22) = 2U.
A(n):
ér(ll) 2p) =0,1=11, 12, 3, 22;
(n) On—i
9(21 22) iy

The reader may easily verify that

§ A n
i=1 '

is a matrix with all elements equal to unity.
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